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Lecture 11 outline

Intro to light amplification

▪ General concepts

▪ Amplifiers/amplification types

Amplifier properties

▪ Gain

▪ Saturation

▪ 3 levels and 4 levels pumping schemes
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General concepts
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Light amplification

Limiting factor of high speed optical communication: attenuation

Can use optical amplifiers to avoid signal regenerators (O-E-O conversion) 

Transmission bandwidth = amplifier’s gain bandwidth
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Properties of ideal amplifier

Linear system: amplitude of input signal increased by fixed factor 

▪ Called the amplifier gain.

Gain is constant for all frequencies within the amplifier spectral bandwidth.

Amplifier may lead to phase shift, varies linearly with frequency (corresponds to time delay).
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Properties of real amplifier

Gain and phase shift are frequency dependent .

▪ Constitute the amplifier transfer function.

May exhibit saturation: nonlinear behavior, output fails to increase in proportion to the input.

Introduce noise, randomly fluctuating components are always present at the output.
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Benefits and requirements of optical amplifiers

Benefits

▪ Eliminates need for optoelectronic 
regenerators in loss limited systems

▪ Can improve the receiver sensitivity

▪ Can increase the transmitted power

▪ Transparent to bit rates and modulation 
formats

▪ Can amplify many WDM channels 
simultaneously

Requirements (ideal)

▪ High gain, high output power, high efficiency

▪ Large bandwidth

▪ Polarization insensitive

▪ Low noise

▪ No crosstalk between WDM channels

▪ Amplify broadband analog and digital signals, 
from kHz to 100’s of GHz
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Amplifier applications

▪ In-line: compensates for transmission losses.

▪ Power-amp (booster) : increases the 
transmitter output power.

▪ Pre-amp: enhances the sensitivity of the 
receiver.
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(some) Amplifier types 

Semiconductor optical amplifiers (SOA) are electrically pumped

▪ Similar to semiconductor laser without feedback and biased below threshold.

▪ Lumped amplification

Doped fiber amplifiers use excitations of ions in the host fiber, they are optically pumped

▪ Erbium doped fiber amplifier (EDFA) is the most common.

▪ Lumped amplification

Raman & Brillouin amplifiers use nonlinear processes to transfer energy from a pump wave to a 
signal wave.

▪ Involve vibrations (phonon) of the silica glass.

▪ Distributed amplification

Parametric amplifiers use nonlinear process to transfer energy from the pump wave to a signal.
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Lumped amplification

The optical power decreases as it propagates:

With amplifier spacing 𝐿𝐴, gain 𝐺 of the amplifier is typically adjusted to compensate the link loss:

▪ Typical amplifier spacing is 30 – 100 km

▪ The spacing must not necessarily be uniform

𝑃 𝑧 = 𝑃𝑖𝑛 exp −𝛼𝑧

𝐺 = exp 𝛼𝐿𝐴
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Distributed amplification

Let the local gain be 𝑔0 𝑧 , we get:

Ideally we would want 𝑔0 𝑧 = 𝛼 

▪ But pump power is not constant: gain decreases with distance from pump source

Condition for compensation over distance 𝐿A is:

𝑑𝑝 𝑧

𝑑𝑧
= 𝑔0 𝑧 − 𝛼 𝑝 𝑧

න

0

𝐿𝐴

𝑔0 𝑧 𝑑𝑧 = 𝛼𝐿A
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Amplifier gain
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Basic concepts

Optical amplification is based on stimulated emission:

▪ Same mechanism used in lasers

▪ Amplifier = laser without feedback

Main requirement

▪ Optical gain realized when the amplifier 

     is pumped (optically or electrically) 

     to achieve population inversion

Optical gain depends on

▪ Frequency of the incident signal

▪ Local beam intensity at any point inside the amplifier
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Recall of photon-atom interaction

Spontaneous emission
▪ Atom is in the upper level 

▪ Emits photon independently of presence of other photons

▪ Responsible for NOISE in amplifiers

Stimulated emission
▪ Atom is in the upper level

▪ A photon may force the emission of a clone photon

▪ Responsible for GAIN in amplifiers

Absorption
▪ Atom is in the lower energy level

▪ Photon may be absorbed

▪ Responsible for SATURATION in amplifiers

𝑊𝑠𝑝 =
1

𝜏𝑠𝑝

𝑊𝑠𝑡𝑖𝑚 = 𝜙𝜎 𝜈

𝑊𝑎𝑏𝑠 = 𝜙𝜎 𝜈
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Amplifier gain

Assume medium with per unit volume 𝑁1 atoms on lower level and 𝑁2 atoms on upper level

▪ Let’s consider the increase in photon flux 𝑑𝜙 over distance 𝑑𝑧

▪ Photons gained by stimulated emission:

▪ Increase in photon flux:

▪ Decrease in photon flux:

𝑑𝑛𝑝ℎ

𝑑𝑡𝑑𝑉
= 𝑁2𝑊𝑠𝑡𝑖𝑚 = 𝑁2𝜙𝜎 𝜈

𝑑𝜙𝑠𝑡𝑖𝑚 =
𝑑𝑛𝑝ℎ

𝑑𝑡𝑑𝑉
𝑑𝑧 = 𝑁2𝜙𝜎 𝜈 𝑑𝑧

𝑑𝜙𝑎𝑏𝑠 = 𝑁1𝑊𝑎𝑏𝑠𝑑𝑧 = 𝑁1𝜙𝜎 𝜈 𝑑𝑧
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Amplifier gain con’d

Photon flux increases exponentially with distance in a gain medium with gain coefficient 𝛾 𝜈

▪ Value of 𝛾 𝜈  depends on strength of the population inversion 𝑁2 − 𝑁1  and material properties 

linked to the emission cross section 𝜎 𝜈

Gain coefficient

𝑑𝜙 = 𝑑𝜙𝑠𝑡𝑖𝑚 − 𝑑𝜙𝑎𝑏𝑠

𝑑𝜙 = 𝑁2 − 𝑁1 𝜙𝜎 𝜈 𝑑𝑧

𝑑𝜙

𝑑𝑧
= 𝛾 𝜈 𝜙 𝑧 With 𝛾 𝜈 = 𝑁2 − 𝑁1 𝜎 𝜈

𝜙 𝑧 = 𝜙 0 exp 𝛾 𝜈 𝑧
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Amplifier gain con’d

The optical intensity is linked to the photon flux through:

Can therefore also write the evolution of the intensity as:

For an interaction region of length L, overall amplifier gain 𝐺 𝜈 defined as

𝐼 𝑧 = ℎ𝜈𝜙 𝑧

𝐼 𝑧 = 𝐼 0 exp 𝛾 𝜈 𝑧

𝐺 𝜈 =
𝜙 𝐿

𝜙 0
= exp 𝛾 𝜈 𝐿
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Amplifier gain bandwidth 

The transition cross section between 2 levels can be expressed as:

Recall that 𝑔 𝜈  , the normalized lineshape function of the transition is: 

▪ centered about atomic resonance 𝜈0 = 𝐸2 − 𝐸1 /ℎ 

▪ has a width Δ𝜈

Frequency dependence of amplifier gain G is due to proportionality to the 

lineshape function 𝑔 𝜈  

𝜎 𝜈 =
𝜆0

2

2𝜋𝜏𝑠𝑝
𝑔 𝜈
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Pumping of gain medium
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Pumping a gain medium - amplifier budget in the absence of input signal 

Level 1 and 2: overall lifetime 𝜏1  and 𝜏2 , permitting 
transitions to all lower levels. 

𝜏2 has 2 contributions: 

▪ One associated with decay from 2 to 1, 𝜏21

• Contains both radiative 𝜏𝑠𝑝 and non radiative 𝜏𝑛𝑟 contributions. 

• In general 𝜏𝑠𝑝 ≪ 𝜏𝑛𝑟  

▪ One with decay from 2 to all other lower levels, 𝜏20

• In general 𝜏21 ≪ 𝜏20

1

𝜏21
=

1

𝜏𝑠𝑝
+

1

𝜏𝑛𝑟
⟹ 𝜏21 ≈ 𝜏𝑠𝑝

1

𝜏2
=

1

𝜏21
+

1

𝜏20
⟹ 𝜏2 ≈ 𝜏21 𝜏2 ≈ 𝜏𝑠𝑝
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Pumping a gain medium - amplifier budget in the absence of input signal 

At steady state the population difference (without input) 𝑁0 = 𝑁2 − 𝑁1 is:

𝑑𝑁2

𝑑𝑡
= 𝑅2 −

𝑁2

𝜏2

𝑑𝑁1

𝑑𝑡
= −𝑅1 −

𝑁1

𝜏1
+

𝑁2

𝜏21

Population difference without input𝑁0 = 𝑅2𝜏2 1 −
𝜏1

𝜏21
+ 𝑅1𝜏1
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Typical time dependences

Since 𝜏2 ≈ 𝜏𝑠𝑝  

And since to reach large population difference need short lifetime on the lower level (as to limit 
population 𝑁1), meaning we want 𝜏1 ≪ 𝜏𝑠𝑝

Approximated population 
difference without input

𝑁0 ≈ 𝑅2𝜏𝑠𝑝 + 𝑅1𝜏1
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Pumping a gain medium - amplifier budget with an input signal 

At steady state condition the population difference 𝑁 = 𝑁2 − 𝑁1 is:

i

𝑑𝑁2

𝑑𝑡
= 𝑅2 −

𝑁2

𝜏2
− 𝑁2𝑊𝑖 + 𝑁1𝑊𝑖

𝑑𝑁1

𝑑𝑡
= −𝑅1 −

𝑁1

𝜏1
+

𝑁2

𝜏21
+ 𝑁2𝑊𝑖 − 𝑁1𝑊𝑖

Saturation time constantPopulation difference with input

𝑁 =
𝑁0

1 + 𝜏𝑠𝑊𝑖
𝜏𝑠 = 𝜏2 + 𝜏1 1 −

𝜏2

𝜏21
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Saturation photon flux density

Recall that 𝑊𝑖 = 𝜙𝜎 𝜈

Saturation photon flux density

For homogeneously broadened media

Small signal gain coefficient

𝑁 =
𝑁0

1 + 𝜏𝑠𝑊𝑖

𝑁 =
𝑁0

1 + 𝜏𝑠𝜙𝜎 𝜈

𝑁 =
𝑁0

1 +
𝜙

𝜙𝑠 𝜈

with 𝜙𝑠 𝜈 =
1

𝜏𝑠𝜎 𝜈

𝛾 𝜈 = 𝑁𝜎 𝜈

𝛾 𝜈 =
𝑁0

1 +
𝜙

𝜙𝑠 𝜈

𝜎 𝜈

𝛾 𝜈 =
𝛾0 𝜈

1 +
𝜙

𝜙𝑠 𝜈

with 𝛾0 𝜈 = 𝑁0𝜎 𝜈
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Saturated gain

For weak radiation (i.e. small signal approximation):

Gain coefficient is a decreasing function of photon flux.

▪ At saturation photon flux density 𝜙𝑠 𝜈 , gain is 
decreased by half.

▪ Saturation is due to the fact that at high flux, 
absorption and emission dominate the interaction.

𝛾 ≈ 𝛾0 and 𝐺 = 𝐺0 = exp 𝛾0𝐿  

𝛾 𝜈 =
𝛾0 𝜈

1 +
𝜙

𝜙𝑠 𝜈
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Pumping schemes
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3-level optical pumping schemes

Amplification takes place between level ‘1’ and level ‘2’

▪ Ground state is the lowest amplifier level ‘1’

Population inversion is accomplished by making use of energy level(s) lying above level ‘2’ 

▪ Designated as level ‘3’

▪ Transition between levels ‘3’ and ‘2’ has short lifetime → decay occurs rapidly → population does not 
accumulate  at level 3 ((i.e. 𝑁3 ≈ 0)

▪ 3-1 decay is slow (32 << 31)

i
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3-level systems con’d

Under rapid 3-2 decay the 3-level system is a 
special case of previously presented analysis:

Let’s return to the rate equation in the presence of signal:

Let 𝑁𝑎 be the total population: 𝑁𝑎 = 𝑁1 + 𝑁2 + 𝑁3 ≈ 𝑁1 + 𝑁2 

i

𝑅1 = 𝑅2 = 𝑅 𝜏1 = ∞ 𝜏2 = 𝜏21

𝑑𝑁2

𝑑𝑡
= 𝑅 −

𝑁2

𝜏21
− 𝑁2𝑊𝑖 + 𝑁1𝑊𝑖
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3-level systems con’d

Want to express population inversion 𝑁 = 𝑁2 − 𝑁1 in standard form of:

By solving the rate equation together with the expression for 𝑁𝑎 we get:

𝑁 =
𝑁0

1 + 𝜏𝑠𝑊𝑖

Population difference without input Saturation time constant

𝑁0 = 2𝜏21𝑅 − 𝑁𝑎 𝜏𝑠 = 2𝜏21 ≈ 2𝜏𝑠𝑝
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3-level system conclusions

To attain population inversion (N > 0, i.e. N0 > 0) requires: 

Just to make 𝑁2 =  𝑁1 (i.e. 𝑁0 =  0) requires a substantial pump power density, given by: 

▪ The large population in the ground state (which is the lowest laser level) provides an inherent obstacle 
to achieving a population inversion in a three-level system

2𝜏21𝑅 − 𝑁𝑎 > 0 ⟹ 𝑅 >
𝑁𝑎

2𝜏𝑠𝑝

𝐸3 − 𝐸1

𝑁𝑎

2𝜏𝑠𝑝
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4-level pumping schemes

Amplification occurs between level ‘1’ and level ‘2’

▪ Level ‘1’ lies above ground state: at equilibrium will be virtually unpopulated provided that 𝐸1 ≫  𝑘𝑏𝑇

Pumping accomplished by making use of the energy level(s) above level 2 and designated as level 3

▪ Transition between levels ‘3’ and ‘2’ has short lifetime → decay occurs rapidly → population does not 
accumulate at level 3 (i.e. 𝑁3 ≈  0)

▪ Level 2 is long lived and level 1 is short lived

i
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4-level systems con’d

External source of energy pumps atoms from level 0 to 3 at a rate R

▪ Decay 3 – 2 considered instantaneous

▪ Pumping level 3 equivalent to pumping level 2: R2 = R

▪ Atoms neither pumped in or out of level 1: R1 =  0

▪ Non radiative decay is negligible: 21 ≈ sp

▪ Typical lifetimes: 20 >> sp >> 1 ➔ 2 ≈ sp and 2 >> 1

Population difference without input Saturation time constant

𝑁0 = 𝜏𝑠𝑝𝑅 𝜏𝑠 ≈ 𝜏𝑠𝑝

𝑁 =
𝑁0

1 + 𝜏𝑠𝑊𝑖
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4-level systems conclusions

No minimum pumping requirement for an ideal four-level system as level 1 is initially empty:

▪ Since only a few atoms must be excited into upper laser level to form a population inversion, a four-
level laser is much more efficient than a three-level one.

Saturation time of 4-level system is shorter than for 3-level system

▪ Four-level system therefore has a higher saturation flux

𝜏𝑠 4𝑙𝑒𝑣𝑒𝑙 < 𝜏𝑠 3𝑙𝑒𝑣𝑒𝑙

𝜙𝑠 4𝑙𝑒𝑣𝑒𝑙 > 𝜙𝑠 3𝑙𝑒𝑣𝑒𝑙
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Summary of pumping schemes

2-level system

▪ (optical) pump depletes population of upper state ✗

▪ Cannot achieve population inversion ✗

3-level system

▪ Efficient pumping into pump band 

▪ Fast decay into upper laser level

▪ Pump half of the total population from lower to upper for inversion ✗

▪ High pumping threshold ✗

4-level system

▪ Efficient pumping into pump band 

▪ Fast decay into upper laser level 

▪ Fast depopulation of the lower level 

▪ Population inversion easily achieved 

▪ Low pumping threshold 
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